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ON HIGHER ORDER (p,q)-FROBENIUS-EULER POLYNOMIALS
U. DURAN', M. ACIKGOZ!, S. ARACI?

ABSTRACT. The main purpose of this paper is to introduce (p, ¢)-Frobenius-Euler numbers and
polynomials, and to investigate their some identities and properties including addition property,
difference equation, derivative property, recurrence relationships. We also obtain integral repre-
sentation, explicit formulae and relations for these polynomials and numbers. Furthermore, we
consider some relationships for (p, ¢)-Frobenius-Euler polynomials of order a associated with
(p, g)-Bernoulli polynomials, (p, ¢)-Euler polynomials and (p, ¢)-Genocchi polynomials.
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1. INTRODUCTION

Let n n
_ _ — — - P —q

(7] = 0" Y 40" e+ 4 T+ 1:ﬂ

where [n]

denote (p,g)-numbers. We see here that [n], = p" 1 [n] stands for g-number

a/p’ a/p
known as [n] ap = %. One can see that (p,g)-number is closely related to g-number
"~1[n]q. By appropriately using this obvious relation between
p

the g-notation and its variant, the (p,¢)-notation, most (if not all) of the (p, g)-results can be
derived from the corresponding known g¢-results by merely changing the parameters and variables

with this relation [n], = p

involved.
The (p, q)-derivative is defined by

Dy of () = 0 f (pz) — [ (qz)

= f(2) =
Op,q® (@) (p—q) =
The (p, q)-binomial coefficients (Z)pq and (p, q)-factorial [n]pg! are defined by

(1)

n nl |
</€> N [n — /[f] ]W'I k], ! (n>k) and [n], !'=[n], [n=1],,--[2],,[1],, (neN).
P p.q Mpg’

Then, the (p, g)-power basis is defined by

@wtar = | @rabr+ag)-- "z +ag" ) (P +ag™ ), if n>1,
pa 1 if n=0,
n
—k
= Z <n> p(g)q(nQ )xkan_k.
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The (p, q)-exponential functions

p e q(2) "
epq(T and E,q(x) = T
p,q n=0 p,q°
hold the identities
= (z+y),
epq(T)Epq(—x) =1 and epq(x)Epq(y) = Z 7?’(17 (2)

and have the (p, ¢)-derivatives
Dy qepq(x) = epq(pz) and Dy Epq(x) = Epq(qz). (3)

The definite (p, ¢)-integral is also defined by

a

/f()dpqa:— —qaki;o (kzi1>

0

with
/bf () dpqx = /bf dpqx — /af (x) dpqx (see [19]). (4)
a 0

We refer the reader to see for more information about (p, ¢)-calculus, e.g., [1,5,8,9,10, 15, 19].
When p = 1, all the notations of the (p, ¢)-calculus reduce to the notations of the g-calculus, see
[13].

The (p, q)-Bernoulli polynomials, the (p, q)-Euler polynomials and the (p,q)-Genocchi poly-
nomials are defined by means of the following generating functions:

SBuina) iy = oy yeea(as) (el <2m),
00 o 2
Zgn($3p7Q)[n] ' = pq[<L)+1€pq( ) (‘Z‘<7T),
(9] o 92
S Gnlepa) i = @) (el <),

respectively. Upon setting = = 0 above, we then have

B,(0:p,q) : =B,(p,q) ((p,q)-Bernoulli numbers),
& (0:pq) + =& (p,q) ((p,q)-Euler numbers),
Gn(0:p,q) : =Gn(p,q) ((p,q)-Genocchi numbers),

for further details, see [8].

Some special polynomials including Euler, Bernoulli, Genocchi, Frobenius-Euler polynomials
and many kind of their generalizations have been studied by many mathematicians, see [1-4, 6-
12,14-18,20-25].
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The classical Frobenius-Euler numbers and polynomials of order « are defined by the following
Taylor series expansions at z = 0:

() = i%w(u)j;:(;‘j;)a, Q

HY (z:2) = ZHa)qu'_(l—U> e**, (6)

e —u

where « is suitable (real or complex) parameter and u € C with u # 1, see [2-4,6,12,14, 16-
18,20, 25].
By Egs. (5) and (6), for n > 0, we note that

(@) <§x> =3 <Z> 1 (w) 2" F = 1O (2;0)

k=0
and

H® <88:c> €™ = H (z: 2), see [2], [14] and [20].

The following section provides some identities and properties for (p, ¢)-Frobenius-Euler num-
ber of order « involving addition property, difference equation, derivative property, recurrence
relationships. We also provide integral representation, explicit formulas and relations for men-
tioned polynomials and numbers. By using generating function of the polynomial stated in
Definition 2.1, we derive some relationships for (p, ¢)-Frobenius-Euler polynomials of order « re-
lated to (p, q)-Bernoulli polynomials, (p, ¢)-Euler polynomials and (p, ¢)-Genocchi polynomials.

2. (p,q)-FROBENIUS-EULER POLYNOMIALS AND NUMBERS

We now begin with the following Definition 2.1.

Definition 2.1. The (p, q)-Frobenius-Euler polynomials H,(La) (z,u:p,q) of order o are defined

by means of the following Taylor series expansion about z = 0:

o 2" 1—wu “
H( (z:2) ZH (x;u: p, )[n] ':< ) epq (22),

»,q° €p.q (Z) —u

where « is suitable (real or complex) parameter, p,q € C with 0 < |q| < |p| <1 and u € C/{1}.

Let

“ N N 2" 1—u @
HE 022 = 13 ()= S wipa) oo = ()
n=0

»,q° €p.q (Z)

(a)

be generating function of (p, g¢)-Frobenius-Euler numbers of order o denoted by Hy, ' (u : p,q).
Obviously that

Hgll) ($7up7Q) : :Hn(l‘aU:p7q)7
M (w50 p,q) L = M) (w5u) (see [14], [17], [20)),
p:
lim M (wsuzpq) o =H (r5u)  (see [2], [6], [25)).
q_> -

From Definition 2.1, we give the following Lemma 2.1.
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Lemma 2.1. The following relationship holds true
" /n
1S D" =3 (1) # s paya
k=0 b,q
Proof. By means of the (p, ¢)-derivative operator D, ,, we have

00 (a) k
o n [} a n H (U 2 q) a n
Hzg,q) (Dpg) 2™ = Hzg,q) < ) T = Z : (k] ! z

P.q’ ap,qzz:

—_ (a 7], .
= Zﬂé)(u:pm[ Pt
Z . .

0 p,q p,q
n n N .
= > (3) HO et
k=0 b,q

O

Here we state a relationship of (p,q)-Frobenius-Euler polynomials of order o and (p,q)-
Frobenius-Euler numbers of order a.

Lemma 2.2. We have

n n n—k a n—
Hﬁf‘)(x;urp,q)zz<k> pU2H (e pg)a*,
p,q

k=0 ’

Proof. Using Definition 2.1, we observe that

H) (x ZH xup,)[nTH,Z< L—u )aep,q(xz)

o epq(2) —u
M (u:p,g ple
7;) [nl,, q' 7;) ],
o0 n n
- (1) A e )
which gives the desired result by comparing the coefficients [n] ; of the both sides. O
p,q

As a result of Lemma 2.2, we obtain the following Corollary 2.1.
Corollary 2.1. In the case x =1 in Lemma 2.2, we have the following formula

/Hgla) (Liu:p,q) = Z (Z) p(ngk)’}-[]ia) (u:p,q). (7)

k=0

We remark that Eq. (7) is (p, q)-generalization of the following familiar formula:

) (L) = kzn::o <:>H( )

HO (a;u:p,q) = pa.
We now give the following Lemmas without proof, because one can easily derive by using the
Eq. (2) and Definition 2.1.

Note that
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Lemma 2.3. (Addition Property) We have

n

n o n— n—k
M ((w+y)p7q;u:p,Q):Z<k> HY (w0 p,q) "),
p.q

k=0

Lemma 2.4. (Difference equation) We have
(L= w) M (up,q) = HY (Liu:p,g) — uHi) (w:p,q).

Lemma 2.5. (Derivative property) We have
0

Op,q®

HE (230 p,q) = [n],, HiY,) (prsu s p.a).

Lemma 2.6. Let o and 8 be suitable (real or complex) parameters. Then (p, q)-Frobenius-FEuler
polynomials satisfy the following relation:

n n N
H%a-l-/j) (x;u:p,q) = Z <k> 7—[/,(C ) (x;u:p,q) ’Héﬁ_)k (u:p,q).
k=0 bq
Lemma 2.7. (Recurrence relationship) ”HS{I) (x;u : p,q) fulfills the following equality:

- n n—k [} «@ a—
Z<k> pU2)H1 (w50 p,q) — w M (@i p.g) = (1—w) HE Y (230 p,q).
k=0 p:q

When o =1 in Lemma 2.7, we have

Z (Z) p(ngk)?-lk (x;u:p,q) —uHy (x;u:p,q) = (1 —u) x"p(g) (8)
k=0 P,q

We provide now the following explicit formula for (p, ¢)-Frobenius-Euler polynomials of order
Q.

Theorem 2.1. (p, q)-Frobenius-Euler polynomials of order o hold the following relation:

H (w0 p,q) =

k=0 s=0

Proof. Indeed,

Z%%“)(ﬂf;u:RQ)[nTn,:( S >a€p,q(fw)

p,q° €p,q (Z) —u

— (Zp(g)xn mz” !> <Z H) (u:p,q) [n,]z” !>
n=0

p.q
0o n

> <Z>pqp G)ab 4, (u:p.q)

!
n=0 k=0 ) !

n

It remains to use Eq. (8) in order to complete the proof of this theorem. Il

The (p, q)-integral representation of 7—[7({1) (x;u : p,q) is given by the following theorem.
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Theorem 2.2. The following (p, q)-integral is valid:

R G i G ) (9)
[n+ 1]p,q |

/’H%a) (z;u:p,q)dyqx =

Proof. Since

b
D) o= 1 (6~ f @) (see [19)
p,q

in terms of Lemma 2.5 and Egs. (3) and (4), we arrive at the asserted result

b
0 1 T
H (z3u:p,q)d :/H(a) Louipq)d
/3p,q$ n (Tup,q)dygx [n+1]p7q nt1\ u:p,q)pgl
a a
H), <§u P, q) -1 (,%;u:p, q)
7+ 1)
This completes the proof of this theorem. O

The integral identity (9) is (p, ¢)-generalization of the formula

b
(@) (p. (o) .
/Hga) (z;u) dx = My (b5u) = Hy iy (a3u)

—— , see [14].

Here is a recurrence relation of (p, ¢)-Frobenius-Euler polynomials by the following theorem.
Theorem 2.3. We have

k

n
n _
Hyi1 (2502 p,q) = xp"Hy (30 : p, q) — ( ) ¢"p"FHy (x50 p, @) Hoor (Liu:p,q) -
k=0 p,q

Proof. By inspring the proof way of Kurt used in [17], for o = 1, applying the (p, ¢)-derivative
to Hy, (z;u : p,q) with respect to z yields to

= 9 2" 0 €pq (x2)
7Hn(x,up,q)7:(1—u) { i }7
nz:() Op,q? [n]p,q! Opgz L epgq(2) —u
From (p, g)-division rule, we get
(1 ) (epq (q2) — ) Tp.az CPa (z2) — epq (q22) % (ep,q (2) —u)
= —u
(ep q (pz) — ) (epq (q2) — )
1—u 1— 1—u

= xep . (pz) — uep q (Tpz) — 7%,[1 (p2) q(p2) 4€pq (qz) _ uep,q (qz=z)

= xZ’H ;U p,q

By using the method of Cauchy product, comparing the coefficients of #, then we have the
p,q
desired result. g

ZH (L;u:p,q) 'ZH (5w :p,q)q"

p.q ! ]qu n=0 [ ]qu'

We now state a new identity for H,, (z;u : p,q) as given below.
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Theorem 2.4. We have

(2u —1) (Z) Hi (u:p,q) Hp—r (251 —u:p,q) (10)
ke P
= uH, (z;

o

pq) —(1—u)Hy (1 —u:p,q).

IS

Proof. By utilizing the same method of Kurt’s study [17], we first consider the identity
2u—1 1 1

(epg (2) —u) (epq (2) — (1 —u)) a epg(2) —u  epg(z) —(1—u)

then
(1—u)epg(xz) (1 — (1 —u))
(epq (2) —u) (€pq (2) = (1 —uw))
(I-u)epg(zz) (L—-u)epq(zz)(l—(1—u))
epq (2) —u epq(2) — (1 —u) ‘

(2u—1)

Hence, we see

P
D Hn(mil—u:ipq)

! 0= [y,

(2u—1) Ho (u:p,q)
n=0

oo
Zn

()4

> n

z

= UZ’Hn(w;u:p,Q)W —(L=u)) Hn(z:1—u:p,q)
n=0 p,q’ n=0

n

Checking against the coefficients of L, then we have the asserted result (10). g

(Mg
The relation (10) is a (p, g)-extension of Carlitz’s result Eq. (2.19) in [7].

Theorem 2.5. The following relationship holds true for (p, q)-Frobenius-Euler polynomials:

n n n—k n— n

Mo (zu:pg)=uy <k> ¢"2) (1" Uy (5w pog) + (1 —u) (2 - Dpg-
k=0 pq

Proof. This proof is obtained by considering the proof method in Kurt’s work [17]. From the

property (2) and the identity

U 1 1

(ep,q (2) —u) epq(2) B epg(2) —u  epg(2)’

we can write

u(l —u)epgq(zz) _ (1 —u)epq (22) _ (1 —u)epq(x2)
(epg (2) —u) €pq (2) epq (2) —u €p,q (2) 7
u(l—u)epq(z2) (1 —u)epq (22)
: E,,(— = —(1- E,,(—
(ep,q (Z) o u) p.q ( Z) €p.q (z) —u ( u) €p,q ($Z) p.q ( z)
which gives
00 on 0 N Lo
UZHn (93;U3P,Q)qu(2) (-1) ] |
n=0 Pd’ n=0 P
=Y Hp(wiuipq) - (1—u)> (x—1)" -
Equating the coefficients of —2—, we derive the asserted result. O

[n]p,q
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Now we are in a position to present some relationships for (p, ¢)-Frobenius-Euler polynomials
of order « related to (p,q)-Bernoulli polynomials, (p, ¢)-Euler polynomials and (p, ¢)-Genocchi
polynomials as given in Theorems 2.6-2.8.

Theorem 2.6. The following recurrence relations are valid:

H (z;u: p,q)

s=0 k= p,q
n+1 s (a)
n-+1 S k H, _s(:n;u:p,q)
s=0 S Jpa Lizo X n pq

(o) T )

1| [ <n) k 2" = 2"
= - By (: p, q)p(2)> =D Bu(z:p,q) ]
S 6., 2 o
> HY (uip,g) -
n=0 [n}p’q‘
=> D > By (:p,q) p\2) — By (2 p,q)
S k s
n=0 Ls=0 D9 k=0 p.q s=0 p,q
n—1
(c) <
'Hn—s (u :p’Q) ;
1lp.q"
By using Cauchy product and comparing the coefficients of %, the proof is completed. O

Theorem 2.7. We have

S

H (z5u:p,q) = Zn: (Z)M {Z <Z>pq5k (z:p,q)pl2) + & (z: p, q)} W

s=0 k=0 ) b,q
n s (a)
s s—k H, s (x;u:p,q
= > (Z) {Z (k> & @ a2 + &, q)} E2] !
s=0 pq k=0 p,q p,q

Proof. The proof of this theorem is based on the following equalities

(““)aep,q(m) _ (HL)“eM L YRVIOES Y

epq (2) —u epq (2) —u epg(2)+1 [2],,

(o) wt = (a) e

p.q

and is similar to that of Theorem 2.6. g
Theorem 2.8. Fach of the following relationships holds true:
M (250 p,q)
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n+1 s "
> (" > : H D,

— <n + > <Z> Gs—r (x:p,q) p(z) +Gs(z:p,q) ntl—s (u:p,q)
s=0 D,q D,q

5 k=0 [2}137’1 [TL + 1]137’1

ntl s (a)
n+1 S k Mol (T30 :p,q)
= gS* 9 (2) +gs ) ntlos .
Z< : ) Z(k) HP PG ) T

k=0
Proof. By making use of the following equalities

(1—u>“ep7q(m) _ (HL)“eM o) Pna® ()41

( 1—u >aep7q(m) _ ( 1—u u)“ 2], 2 ep7q(z)+1ep7q<$z)’

epq(2) —u epq (2) — epq(2) +1 [Q]p,q z

the proof of this theorem is completed similar to that of Theorem 2.6. O

3. CONCLUSIONS

In this paper, we have introduced (p, ¢)-Frobenius-Euler polynomials and numbers of order «
and investigated their some identities and properties involving in addition property, difference
equation, derivative property, recurrence relationships. We have also given integral represen-
tation, explicit formulas and relations for these polynomials and numbers. Moreover, we have
obtained some relationships for (p, q)-Frobenius-Euler polynomials of order « associated with
(p, ¢)-Bernoulli polynomials, (p,q)-Euler polynomials and (p, ¢)-Genocchi polynomials. There-
after, we have discovered (p,q)-extensions of Carlitz’s result [7]. When p = 1, the results
obtained here reduce to known properties of g-polynomials. Also, in the case ¢ — p = 1, all our
results reduce to ordinary results for Frobenius-Euler polynomials and numbers.
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